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Abstract  
We discuss the behavior of the thermoelectric 

coefficients for electron tunneling through a nanocrystal. 
The distinct features of the conductance, the thermopower 
and the thermal conductance and the relation between them 
is discussed. In the quantum regime, the energy spectrum of 
the nanocrystal determines electron transport. Irregular 
energy spectrum results to non-periodic sequence of peaks 
paricularly pronounced in the thermal conductance. 
Quantum cofinement is responsible for the small vaues of 
the conductance and the thermal conductance. The effect of 
increasing thermal energy is condidered. The validity of 
Wiedermann-Franz law is discussed for energies ranging 
from the quantum regime up to the classical regime.   

 

Motivation and Model 
The thermoelectric phenomena of mesoscopic systems 

have been adequately studied in the ballistic and diffusive 
regime [1-3]. In the recent years, there have been proposed 
thermoelectric applications of quantum dot superlattices 
made of different material systems as well as periodic arrays 
of nanocrystals [4-10]. In all theoretical and experimental 
studies the crucial role of the values of the electrical and the 
thermal conductivities in these nanostructures has been 
pointed out. Reduced thermal conductivity has been found 
and has been attributed to electron and phonon confinement. 
So, these structures seem promising for efficient 
thermoelectric devices and this explains the noticeable 
growing research interest in their properties. Other device 
applications are also expected. Moreover, heating effects in 
nanodevices are crucial in determining their operation 
characteristics so that this field is the subject of current 
technological research. 

The electron conductance, thermopower and thermal 
conductance of a quantum dot weakly coupled to two 
electrode leads has been calculated in the sequential 
tunneling regime within a linear response theory [11-13]. 
The Coulomb interaction has been treated within the 
framework of the ‘orthodox model’ for single-electron 
tunneling. It has been presented a systematic study of the 
electron transport coefficients for a wide range of values of 
the parameters that affect transport so that the effects of the 
charging energy, the thermal energy, the quantum 
confinement and the energy spectrum degeneracy become 
evident. Here, we give emphasis on our results on the effect 
of an irregular energy spectrum to the thermoelectric 
transport coefficients of nanocrystals. 

We consider a nanocrystal (nc) weakly coupled to two 
electron reservoirs via tunnel barriers. Each reservoir is 

assumed to be in thermal equilibrium and there are a voltage 
difference V and a temperature difference ∆Τ between the 
two reservoirs. A continuum of electron states is assumed in 
the reservoirs that are occupied according to the Fermi-Dirac 
distribution. The Fermi energy, EF, in the reservoirs is 
measured relative to the local conduction band bottom.  

 The nanocrystal is characterized by discrete energy 
levels Ep (p=1,2,..) that are measured from the bottom of the 
potential well. Each level can be occupied by either one or 
zero electrons. It is assumed that the energy spectrum does 
not change by the number of electrons in the nc. The states 
in the nc are assumed to be weakly coupled to the states in 
the electrodes so that the charge of the nc is well defined. 
We adopt the common assumption in the Coulomb blockade 
problems for the electrostatic energy U(N) of the nc with 
charge Q=-Ne:  

 
2( ) ( ) / 2 extU N Ne C Nφ= − ,  (1)

 
where C is the effective capacitance between the nc and the 
reservoirs and extφ  is the contribution of external charges. 

 The tunneling rates through the left and right barriers 
from level p to the left and right reservoirs are denoted by 

l
pΓ  and r

pΓ , respectively. It is assumed that energy 

relaxation rates for the electrons are fast enough with respect 
to the tunneling rates so that we can characterize the state of 
the nc by a set of occupation numbers, one for each energy 
level. It is also assumed that inelastic scattering takes place 
exclusively in the reservoirs not in the nc. The transport 
through the nc can be described by rate equations. Energy 
conservation is applied upon tunneling. 

 Due to the voltage difference V and the temperature 
difference ∆Τ between the two reservoirs, electric and 
thermal currents pass through the nc. In the regime of linear 
response, the current I and the heat flux Q are related to the 
applied voltage difference V and the temperature difference 
∆Τ by the equations:  
 

I G L V
M KQ T∆

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

.  (2)

 
The thermoelectric coefficients are related by Onsager 

relation that in the absence of a magnetic field is: M=-LT . 
Equation (2) can be re-expressed with the current I rather 

than the voltage V as an independent variable:  
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The resistance R is the reciprocal of the isothermal 

conductance G. The thermopower S is defined as: 
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The Peltier coefficient is defined as: 
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 Finally, the thermal conductance is defined as: 
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 The transport coefficients can be written [13] in the 

following general formalism: 
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The electron thermal conductance, κ ,  is given by the 

expression: 
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Quantum regime 
In this limit, the discrete energy spectrum determines 

transport properties of the nanocrystal. A single charging 
state contributes. For an equidistant energy levels spectrum 
(Ep=p∆E) and level-independent tunneling rates: 
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where /( )l r l rγ Γ Γ Γ Γ≡ + .  
 The calculated conductance and thermopower are 

plotted in figures 1 and 2. It is seen that in the quantum limit 
periodic Coulomb-blockade oscillations are exhibited. The 
peaks of the conductance occur each time an extra electron 
enters in the nc. Both transport coefficients have the same 
periodicity: 

 
 2 /FE E e C∆ ∆= + .    (13) 

 The sawtooth short-period oscillations of the 
thermopower are due to the discreteness of the energy 
spectrum.  
 In the thermal conductance behavior dominates the 
effect of quantum confinement due to the dependence on the 
ratio of the energy level spacing over the thermal energy, 
∆Ε/kBT. This is analytically described by equation (12). The 
electron thermal conductance of nanocrystals decreases 
nearly exponentially with decreasing temperature. The 
dependence on the energy level separation, ∆Ε, in equation 
(12) shows an equally fast decrease as the size of the 
nanocrystal decreases. Hence, it is explicitly shown that 
quantum confinement is responsible for the fast decrease of 
the electron thermal conductance in the nanoscale. This 
behavior agrees with the observation that the thermal 
conductivity of nanocrystals is very small compared to that 
of bulk [e.g. 14].  
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Fig. 1.  Calculated conductance, G, and thermopower, S, for a 
series of equidistant energy levels with separation ∆E= 0.5 
e2/2C and for kBT=0.05 e2/2C. 
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Fig. 2.  As in figure 1 for two temperatures: kBT=0.05 e2/2C 
(solid lines) and kBT=0.1 e2/2C (dotted lines). 
 
An equidistant energy level spectrum and energy 

independent tunneling rates have been assumed in equations 
(10-12). It is shown that: Gmax decreases linearly with 
increasing thermal energy and it is nearly independent of the 
energy level spacing (figure 2); κmax depends on both the 
thermal energy and the energy level spacing through their 
ratio, ∆Ε/kBΤ, and it decreases rapidly with decreasing 
temperature and increasing energy level spacing (figures 3 
and 4). Let us now consider the effect of an irregular energy 
spectrum. This case is a more realistic approach for 
nanocrystals. Now, the conductance and the thermopower 
peaks will shift according the energy spectrum following 
locally equation (13) and will be therefore nonperiodic. The 
height of these peaks will be only weakly affected. The 
situation is different for the thermal conductance as 
predicted by equation (12). The position, but more 
considerably the shape and the height of the peaks of the 
thermal conductance are affected, resulting to a non-periodic 
sequence of peaks. This behavior is seen in figures (3) and 
(4) for two temperatures. 
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Fig. 3.  Calculated thermal conductance, κ, for a series of 
equidistant levels with separation ∆E= 0.5 e2/2C (thick solid 
line) and for a irregular energy spectrum with the same density  
(solid line) for kBT=0.05 e2/2C. 
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Fig. 4.  As in figure 3, for kBT=0.1 e2/2C. 

Classical regime 
In the classical regime, the discreteness of the energy 

spectrum of the nc is screened by the thermal energy and the 
energy spectrum can be treated as a continuum. In this limit, 
the electron distribution function can be approximated by the 
Fermi-Dirac distribution. The probability distribution P 
takes the classical form ( )cl

eqP N .  

 For big charging energy, 2 / Be C k T>> , it is obtained: 
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The electron thermal conductance is given by the 

equation: 
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At low temperatures Coulomb blockade is exhibited. 
When the thermal energy becomes big compared with the 
charging energy, the amplitude of the Coulomb oscillations 
decreases and finally shrink.  Wiedermann-Franz law holds 
in this limit. 

 At the peaks of the thermal conductance, equation (17) 
becomes: oL GTκ = , i.e. Wiedermann-Franz law is valid. 
This is due to ballistic heat transfer at the peaks where the 
Coulomb barrier is suppressed. Away from the peaks it 



holds: CB oL L>  and hence the heat transport is greater than 
the charge transport. The breakdown of the Wiedermann-
Franz law is due to the Coulomb blockade effect. The 
maximum deviation from Wiedermann-Franz law is at the 
threshold of conduction and the deviation decreases as the 
conduction peak is approached, where the Coulomb barrier 
is suppressed. In the presence of the Coulomb barrier ‘hot’ 
electrons contribute to the conduction.  

Finally, in order to examine the relation between the 
thermal conductance and the conductance, the ratio 

max max/ oL G Tκ  is plotted versus the thermal energy in 
figure 5 for two cases of confinement:  for ∆E= 0.1 e2/2C 
(dots) and for ∆E= 0.5 e2/2C (triangles). At low 
temperatures, quantum confinement that dominates over the 
thermal energy restricts the heat transport and the ratio is 
smaller than unity.  Either in the quantum limit or in the 
intermediate region, quantum processes dominate in 
transport and cause deviations from Wiedermann-Franz law 
that is restored at the onset of the classical regime, at the 
peaks of conduction. Wiedermann-Franz law is expected to 
be restored faster with increasing temperature the weaker is 
the confinement. This is indeed found in the calculated data 
and it can be seen in figure 5 where the dots show a sharper 
increase than triangles with increasing thermal energy. 
Wiedermann-Franz law is again restored when due to 
thermal broadening all channels of conduction contribute 
equivalently to transport.  
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 Fig. 5.  The ratio max max/ oκ L G T  versus the thermal energy for 
two cases of confinement:  for ∆E= 0.1 e2/2C (dots) and for ∆E= 
0.5 e2/2C (triangles). 

 

Conclusion 
The thermoelectric transport coefficients for electron 

tunneling through nanocrystals show interesting dependence 
on the energy spectrum, the charging energy and the thermal 
energy. The interplay between the characteristic energies 
determines the transport behavior of a structure of 
nanocrystals. In the quantum regime, the signature of the 
energy spectrum in the thermoelectric properties has been 
shown to be particularly pronounced in the thermal 
conductance .  
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