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Abstract 
Occurrence of curl currents in thermoelectric 

elements has been always regarded as an extremely 
undesirable phenomenon resulting in an inevitable efficiency 
reduction of the thermoelectric material. Curl currents 
usually appear due to local inhomogeneities in a 
thermoelectric material. In the given paper the occurrence of 
curl currents in a homogeneous material is investigated. 

It is shown that in an element of the arbitrary shape 
the parallelism of the temperature and electric potential 
gradients is required to eliminate curl currents. As the 
electric and temperature fields in an element are described 
by different equations, in a general case there are no reasons 
for these gradients to be collinear. It means that an element 
of arbitrary shape always works worse than a quasi one-
dimensional one, where electric and temperature fields 
depend on one coordinate. 

We prove that for quasi one-dimensional elements in 
conditions of thermal exchange with environment there 
inevitably appear curl currents in a vicinity of the element 
side surface. As a result, even at the zero contact resistance 
there are additional reasons for the cooling efficiency of the 
thermoelectric module to become lower than that of the 
thermoelectric material it is made of. 
 
Introduction 

The most frequent inhomogeneity in 
semiconductors is a statistical inhomogeneity of the dopant 
concentration resulting in the Seebeck coefficient variation 
in the material. It explains the great attention usually paid to 
the study of the Seebeck coefficient uniformity in 
thermoelectric materials. In the given paper, without 
confining ourselves to any specific model, we investigate the 
reason of curl currents occurrence in a statistically 
homogeneous material.  

Thermal processes in a thermoelectric element (or a 
pellet) are described by the equation [1]: 
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where qr  is the energy flux density: 
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where j
r

 is electric current density, α  and σ  are  the 
Seebeck coefficient and electrical conductivity, respectively, 
κ  is thermal conductivity of the material, and T  is 
temperature.  

The electric current inside the pellet is continuous, 
therefore 
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and the relation between the electric current and electric 
potential is set by the equation 
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where 
e

~ µ
φφ −=  is the position of the chemical potential 

level in the external electric field per electron. 
 

Curl Currents in Isotropic Thermoelectrics 
The boundary conditions for the standard problem 

of finding the electric current and temperature distribution in 
a thermoelectric element of any shape (Fig. 1) are as 
described below. 
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The contact surfaces 1 and 2 (Fig. 1) are kept 

isothermal with temperatures 1T  and 2T . The potentials φ~  
of each contact surface 1 and 2 are constant. Let n

r  be a 
normal towards the lateral surface of the element. We 
assume that this surface is adiabatically isolated so that the 
normal component of the thermal flux and electric current on 
its side surface equals: ( ) 0n,qqn ==

rr
 and ( ) 0n,jjn ==

rr
. It 

results in Eqs. (2), (4) requiring that on the side surface of 
the element: 
( ) 0T,n =∇
r

, ( ) 0~,n =∇φ
r

.    (5) 

We assume that the thermoelectric material is 
isotropic and homogeneous, therefore α  and σ  are only 
temperature functions and temperature is determined by the 
coordinate r

r
, in which the temperature is measured. Eq. (4) 

easily yields: 
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Thus the curl currents appear when electrical 
conductivity depends on temperature and the directions of 
gradients of temperature and of electrical potential in the 
element do not coincide, i.e. isothermal and equipotential 
surfaces are different. The first requirement in the real 
material is always true. As for the second requirement: as the 

Figure 1.   
A schematic image of 
an arbitrary form 
element; 1 and 2 are the 
electrical and thermal 
contact surfaces. 



 
 

electric and temperature fields are described by different 
equations (1) and (3), generally there are no reasons for 
collinearity of vectors φ~∇  and T∇  in the element of the 
arbitrary form. Even on the lateral surface of the element 
where they are perpendicular to the normal (5) they lay 
tangentially to the lateral surface and their collinearity is not 
necessary at all. I.e. in a thermoelectric element of arbitrary 
form the curl currents always appear. Removing them 
requires choosing a special form of the element. 

If geometry of the thermoelectric element provides 
for the temperature and electric fields to depend only on one 
spatial coordinate ξ , then curl currents are absent as Eqs. (1) 
and (3) become one-dimensional.  
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Figure 2. Shapes of thermoelectric elements in which 
temperature and electric field depend on one spatial 
coordinate: in a) they depend on distance from the contact 
surface; and in b) on radius. Contact surfaces in case a) are 
planes and in case b) are parts of spherical concentric 
surfaces. 

As an example, we can suggest a cylinder in the 
adiabatic environment (Fig. 2а) or an element cut out of the 
hollow sphere by a radius-vector, also in the adiabatic 
environment. We will name such shapes quasi-one-
dimensional. In case а) isothermal and isopotential surfaces 
are the planes parallel to the contact junctions, and in case b) 
they are spherical concentric surfaces. The gradients of 
temperature and potential in both cases are collinear and 
directed in case а) parallel to the cylinder axis, and in case b) 
along the radius-vector. 

The known rule that the maximal achievable 
temperature difference on the ends of the thermoelectric 
element with surfaces being adiabatically isolated does not 
depend on the shape of the pellet [2] should be replaced with 
a stronger statement: the maximal achievable temperature 
difference on the ends of the arbitrarily shaped element with 
adiabatic isolation of walls cannot exceed the temperature 
difference on the ends of the quasi-one-dimensional element.  

 
Let us assume that in a pellet of any form in a point 

r1  on the pellet surface vectors φ~∇ and T∇  are parallel and 

equal 1
~φ∇  and 1T∇  respectively. From Eq. (4) it follows 

that in this case the vector of electric current density is 
collinear to the temperature gradient. Let us consider now 
this point in conditions of heat exchange with environment 

when the heat flux of density )( 1rq  falls on the lateral 
surface in point r1. In this case the boundary conditions for 
the heat fluxes on the lateral surfaces become: 
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where F is the coefficient of heat exchange with 
environment and aT  is ambient temperature. Occurrence of 
the temperature gradient normal component causes the 
occurrence of the normal component of electric current due 
to the charge carriers diffusion. This current will be 
compensated by the change of electric potential (the Seebeck 
voltage) so that the aggregate normal component of the 
current would be equal zero. From Eq. (4) it follows, that 
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For preservation of parallelism of aggregate gradients it is 

necessary that 
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while the relation between them is given by Eq. (4). 
Therefore, generally in case of heat exchange with the 
environment the resulting vectors 1

~φ∇ and 1T∇ do not 
remain parallel, which inevitably results in curl currents.  
 As an example we consider an element consisting 
of quasi-one-dimensional pellets (Fig. 3). 
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Figure 3. A schematic image of the thermal element with 
vectors of currents and gradients of temperature and 
potential. 
 
Arrow j  indicates the electric current direction. We assume 
that the current is directed so that the common junction of n- 
and p- type pellets should cool down. In quasi-one-
dimensional case vector 1 equals temperature gradient 

ξ
κ

d
dT . In case of heat exchange with environment the 

direction of this vector changes to vector 2 that equals (8) 
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κ
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.  Vector 4 is the vector of the potential 

gradient, which in quasi-one-dimensional case is equal 
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we see that they are not similar and vectors 3 and 5 are not 
collinear, therefore, close to the surface of the pellet in 
conditions of heat exchange with environment there are curl 
currents, which result in reduction of thermoelectric 
efficiency of the pellet. 
  Thus any inhomogeneity induced in quasi-one-
dimensional pellets should result in curl currents, as they 
interfere with it being quasi-one-dimensional. The exception 
refers to the inhomogeneity along the basic spatial 
coordinate of the pellet that leaves the pellet quasi-one-
dimentional. 
 
Conclusions 
 Traditionally all divergences between the efficiency 
(Figure-of-Merit) of thermoelectric material Z and the 
efficiency of the thermoelectric module are explained by the 
contact electric resistance. Nevertheless, the direct Z 
measurements of materials based on bismuth chalcogenides 
frequently give values Z = 3.2 – 3.3 10-3 K-1 (sometimes 
even as high as 3.5 10-3 K-1). The Figure-of-Merit, calculated 
considering temperature dependencies of thermoelectric 
parameters, for modules never gives anything similar. This 
can be caused not only by contact resistances but also by the 
occurrence of near-to-surface curl currents in a pellet. The 
measurements of material Z are commonly carried out on 
large-section samples (from tens to hundreds square 
millimeters). It is done to reduce the influence of the 
geometrical factor and most of modern miniature modules 
have pellets cross-section around a millimeter and less. In 
larger pellets the ratio of their perimeter to area is smaller 
thus decreasing the impact of curl currents. Unfortunately it 
is difficult to allocate this effect, as besides the influence of 
curl currents, with the decrease of the pellet section we get 
an increase the influence caused by broken surface layer due 
to pellet cutting.  
 Besides, in real modules for pellets on the edge on 
the module the thermal conditions on the outer surface of the 
pellet would be different from the thermal conditions on the 
inner surface of the pellet, which can result in stronger 
distortions of temperature field compared to adiabatically 
isolated pellet. Thus the efficiency of the periphery pellets 
can decrease more that the efficiency of the pellets inside the 
module, which also should result in reduction of the module 
Z-value compared to efficiency of the thermoelectric 
material.  
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